APPLICATION OF THE PARAMETRIC METHOD
TO THE SOLUTION OF PROBLEMS OF THE
UNSTEADY THERMAL BOUNDARY LAYER

Yu. V. Saraev UDC 532.526.2

A generalization of a parametric method developed earlier for the calculation of the dynamic
boundary layers is presented for problems of the unsteady laminar thermal boundary layer.

A generalization of the parametric method of Loitsyanskii [1] to problems of the thermal boundary
layer was accomplished by Duric [2]. For a solution of the equation of the thermal boundary layer the
author used a parametric method which he developed earlier for calculating the unsteady dynamic layer
with a velocity at the outer boundary which varies according to the law U(x, t) = v(x):2{t). In [3] this same
method is used to study the thermal boundary layer near the leading critical point of a heated cylinder set
into motion by an impulse, with the results of the calculation being in good agreement with data obtained
by a method of successive approximations [4] similar to the Blasius method for the dynamic problem,

In the present work the results of the parametric method presented in [5] are used to solve the equa-
tion of the thermal unsteady laminar boundary layer in an incompressible fluid.

1. The equation of motion of a flat unsteady laminar boundary layer in an incompressible fluid for
a stream function y has the form
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Here and afterward the prime and the dot above a letter denote part1a1 derivatives with respect to x and t,
respectively.

— =u, (¢, y) at x=x,.

If it is required to determine the temperature field in the fluid, then to the system (1) is added the
energy equation, which in the given case can be written as follows:
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with the boundary conditions

"a) T=T,(x, ) or b) —al=qw(x, Hat y=0,T=Ts at y= oo,
_ 9y
, (3)
. T=Tyx, y) at t=t, T=T,(¢ @ at x=ux,.
The condition a) is used in the present article, i.e., Eq. (2) is solved for the case when the wall

temperature Tw is given, although the solution of the problem with the heat flux qyy glven — condition b)
— can be obtained ina similar way.
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The last two terms in (2), which have the order of the Eckert number (Ec = U?y/ cpAT), take into
account the heat produced near the surface of the body through viscous dissipation and compression, re-
spectively. It must be noted that this formulation of the problem, when the physical parameters of the
fluid are assumed to be constant, is valid only in a very narrow range of temperature drops AT =Ty
— To and at small velocities Ue of the incoming stream, For example, for air under standard conditions
one can take v = const, Pr = const, and p = const with an error of 5% only within the limits of AT = 15°
and Uw = 100 m/sec, and for liquids the range of AT is even smaller because of the sharp temperature
dependence of v and Pr. For the latter the interval AT can be widened somewhat, however, if in the equa-
tions one uses the values of the physical parameters taken at some mean determining temperature T * out
of the given interval AT. With such a temperature drop aund in the case of moderate velocities 50 m/sec
= Uw = 100 m/sec for the incoming stream the Eckert number varies in the range of 2/3 = Ec = 1/6, and
therefore, it becomes necessary to allow for the last two terms in Eq. (2).

2, First let us consider the transformation of the equation (1) for the dynamic boundary layer,
which is possible because of its self-similarity. Let us write the integral momentum équation for the un-
steady boundary layer., We have
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We introduce the dimensionless characteristic functions
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where h(x, t) is some characteristic linear scale of the transverse coordinate in the boundary layer. Then
with the help of the new dimensionless variables
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as well as the infinite series of parameters
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(z = h®/v) and the constant parameter
g =2 = const (8)

Eq. (1) is reduced with the use of (4) to the "universal” form, universal in the sense that neither the
equation itself nor its boundary conditions will depend explicitly on U(x, t).

We can write the "universal" equation in the form
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where ¢,(n) is the Blasius solution for the steady boundary layer at a plate;

E(fkn‘ g) = [(k - l)f()]fkn "vi_ (k _i_ n) fhng ~‘iﬁlr:k,n-g-lL D(fkm g) = [(k - I)f].cfkn "%’ (k + n) fknF "T fk-{-i,n]» (10)

while the function F(fi,, g) is determined from the equation
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which is obtained by a transformation of Eq. (4).

We note that Eq. (7) is exact for a broad class of veloeities U(x, t) for which z = At + C(x), where
A is an arbitrary constant, and C(x) is some function of the longitudinal coordinate.

- 3. TFor the solution of the problem of the thermal boundary layer we introduce into the discussion
the dimensionless temperature 6:

T—T
B(x, y, ) = — —"=_ (12)
( d ") F—
and as a supplement to the parameters (7) and (8) the infinite series of parameters
Ui gtig .
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where ¢ = Ty — Tx. Inparticular, the first parameters of this series will be
v ., ; .
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We note that a corresponding value characterizing the dynamic layer (z = zqg) is used as the trans-
verse scale of the thermal boundary layer. This means that the previous history, expressed by the last
two equalities in (3), is not taken into account. Thus, if in the problem one is required to study the de-
velopment of the temperature profile given at some "initial" cross section of the layer and the tempera-
ture field in it at the starting time, then because of the parabolic nature of the boundary-layer equation a
solution in parametric form is possible only at a certain distance from the "initial" cross section and from
the starting time.

We will seek a solution for Eq. (2) with the corresponding boundary conditions from (3) in the follow-
ing form:

U2
T=To+Ty—Tw)0 (M fan Ly &)+ Tez("lv fans 8. (15)
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Then, changing in Eq. (2) to the dimensionless functions ¢ and # and the new variables 7, fi,, and Zij and
the value g, which plays the role of a constant parameter, and in a corresponding way separating the equa-
tions and boundary conditions obtained in the course of the transformation, we find the following equations
for 64 and 9,:
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where 6,,(n, g) is the solution of the equation when l'ij =fpn=10;
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Fig. 1. Dependence of characteristic functions of the
dynamic boundary layer on the parameter fj;.
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where 044(7, g) is the solution of the equation at fiy = 0.

For Lj; and Njj we have the expressions
Lii = [ifo— Iy + (= )) gl iij - li,j.;.lt
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The equations and boundary conditions (16)-(19) do not depend explicitly on the form of the functions T (x,
t) and U(x, t), and in this sense they can be called "universal” just like Eq. (9).

For the determination of the heat flux at the wall we write the equality

or , .
w=—1 =~x—ﬂ"—<836~! -_~.-xﬂcT=——x—‘°’~(cn+ v i) (20)
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Let us introduce into the discussion the Nusselt number

oalx, Hh(x, ) g.h

Nu, = - - @21
Hn 1y AT = )
where e
AT =Ty —Tut+ o 2 (g7, 20), (22)
Cp 71

As a result we have the following expression for the heat flux at the wall:

AT (x, )

qw = )w
h(x, 8

Nu,. {23)
Equations (9), (16), and (18) are integrated once and for all for a fixed value of the Prandtl number

in the m-parametric approximation. The characteristic functions obtained in this case can be used for

the approximate solution of problems having an arbitrarily assigned velocity U(x, t) and temperature Tw(x,

t) expressed through sufficiently smooth functions. Before the integration of the equations it is necessary

to choose some characteristic value as the scale h{x, t) of the transverse coordinate in the boundary layer.

It is convenient to choose h = § **, where H** =1, H* = §*/6** =H, and Eq. (11) takes the form

=Uz = _ Oy — L gy \ _a!i . 24
F z Q[C f1o(2 + H) (fol‘f‘ 2) ;DEIW afkn] (24)
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Fig. 2. Dependence of the reduced coefficients ¢T4
and ¢T3 of the heat fluxes at the wall at Pr = 0,72 on
the parameter f;,: a) whenly =varand lyy=fy =g

= 0.05 for ¢1y; f =var and iyy = Ly =g = 0.05 for gmy;
b) when /y;=var and iy = fy =g = 0.05 for ¢py; g
=var and Zlo = lm = fm = 0,05 for §T2-

4. Equations (9), (16), and (18) were solved in a local approximation in which the parameters fy;, fy,
g, 19, and Iy were retained and all the rest of the parameters and the derivatives with respect to the
parameters were discarded. In this case the indicated equations take the form

de | (F+2f)e+mng d¢ [ ( dcp) _dp
2 + — =0,
B dq? t 2 dn? Fi dn Jl "o dn
de deo v
= — =0 at =0, — - 1as n>oo,
P n . M . n n
(P=(Po(71) at f10=fo1=g=0» : (25)
where po) is the Blasius solution for the steady boundary layer at a plate and B = 0.47;

B d%, 1 de, dy

+ —l———F) 1 } (z + -—-)e —0, (26)
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g,=1at n=00=0 as N> 0.

Here 0, is the solution of the problem of cooling of the wall;

B &, Ly 171 4do d
= - ——F Ll 2 P
Pr dn —+ [(f10+ 2 ) P ﬂgJ dn (im tho dn ) %
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dn? dn
6,=0 at =0, 0,=0 as n—oo,
where 92 is the solution of the problem of the dissipation of mechanical energy in the boundary layer
through friction and compression. In the approximation adopted the functional F in the equations is cal-

culated from the equation

Ff forr @)= Uz =2 [C~fm(2 + H)— (fm + %) H] . (28)

The system of equations (25)-(28) was integrated for the values Pr = 0.72 and Pr =1 on a BESM-2
computer by the trial-run method with iterations. Graphs of the characteristic functions were constructed
asa result (Figs. 1 and 2), Curves of the dependence of the characteristic functions ¢, ¥, and H on the
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parameter fi; for a2 number of values of the unsteadiness parameter fy and at a fixed value of the param-
eter g = 0.05 are shown in Fig. 1. In the range of variation of the parameters of —0,1 = fy; < 0.1 and
—0.2 = g = 0,2 and of f;, from the value at the leading critical point to the value at the separation point
the functional F can be approximated with a sufficient degree of accuracy by the linear dependence

F =044~ 53], — 1.65,, — 2.1g. (29)

The function ¢4 decreases upon approach to the separation of the boundary layer and upon slowing
of the stream (Fig. 2a). These effects can easily be explained if one recalls that e depends on the dis-
sipation of mechanical energy in the boundary layer, The effect on g of the parameter g is insignificant
(Fig. 2b) and shows up noticeably only in the divergent region of the boundary layer. The function ¢y de-
pends weakly on the parameters g, fy, and I, (Fig. 2b). The effect of f;, shows up noticeably only in the
convergent region of the boundary layer, with the absolute value of gy decreasing with an increase in fj,
(Fig. 2). Inthe range of variation of the parameters fy, f;), and g indicated above and in the limits of
variation of —0.1 = {44 = 0.1 and —0.1 = iy = 0.1 the functions gy and ¢, can be represented by the fol-
lowing dependences for Pr=0.72:

L7y = — 0,196 — 1.58(, — 0.575[,,— 0.1g + 0.55f,, - 0.25f,,, (30)
Cre = 0.085 - 1.5, -~ 1.2, -- 0.05g, (31)
where in the present approximation the next to last and the last terms in Eq. (30) are taken into account

only in the convergent section of the boundary layer and in the presence of accelerating streams, respec-
tively.

5. The results of the calculations were used to solve two particular problems: on the boundary
layer at an infinite plane and near the leading critical point of a round cylinder during motion by an im-
pulse.

a) Impulse motion of an infinite plane is characterized by the conditions
U = {Uswhent > 0, Ty — T,whenf >0,
Loat r=0, "7\, at s—0.

Then fj; = fy = 0, and from (29), seeing that F = 0, we obtain g = z = 0.21, while for z = 6**%/y we find
§** = 0.457Vvt. In the case when Pr = 0.72 and AT = Ty, — T = const, using (20), (30), and (31) we ob-
tain an expression for the heat flux at the wall,

g =0.475, L {1 _ 0438 Ui ),
A c,AT)
The exact solution [4] gives
G = 0.4797, AL (1 —0.443 Y )
Ve c,AT

With the help of additional calculations not presented in the article an expression was obtained for the heat
flux at the wall for the values 0.6 < Pr = 1.1;
g, = 05608, 3L ('1 —0.5 _Ui_pros )pro.s‘
Vvt \ c, AT

b) The impulse motion near the leading critical point of 2 round cylinder is characterized by the fol-
lowing conditions:

I

U(x, t)= Uo)_CWhent>O, T' o TwWhenZ‘>0,
{ 0 at t=0, = T, at #=0.

Using Eqgs. (20) and (29), as well as approximations of the characteristic functions ¢t and g, obtained
from graphs constructed for the case of Pr =1 and AT = const, we find the expression for the Nusselt
number,

Nux _ Ju¥ ’VR ;

—% YR 34871 — — 95581 2 w .
Ve, AT U 8[1 — exp(— 2.550)] 2 x (32)

X[0.1716 — Ec, x%0.249 - exp (— 2.557)(0.0934 - Ec,#%0.118)],

where Ec; = U%/cpAT; t= Ugt’/R; X =x/R. Thenas t - « and, neglecting the heat produced through fric-
tion and compression, NugRe !’? = 0,596 as compared with the value 0.570 found from the exact solution
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([6], p. 286).

If in Eq. (32) the square bracket is equated to zero, then one determines the moment when

the heat flux changes sign at a certain place on the surface:

From the exact solution [4] it was found that

C9T | _ at the point¥ — /QOatthetlmet._O
AR
T =0 at the point x = l 069 at the time ¢ = 00,
9y ly=o - — Ec,”
Thus, the heat flux changes sign in the course of time within the interval
/069 - /20
—ECO XL E—Co‘ . (33)
0.274 T 750
B, l/ B, - (34)

We note that the solution of [4] is valid only for short times, andtherefore, one can assert that only
the upper limit of the inequality (34) is obtained with a sufficient degree of accuracy.
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NOTATION

are the longitudinal and transverse coordinates in the boundary layer;

is the dimensionless transverse coordinate;

are the velocity and temperature at the outer boundary of the boundary layer;
is the stream function;

is the {emperature;

is the wall téinperature;

is the dimensionless stream function;

is the dimensionless temperature;

are the projections of velocity in the boundary layer onto the x and y axes, respec-
tively;

is the heat flux;

is the fluid density;

are the dynamic and kinematic viscosity coefficients;

are the Prandtl, Nusselt, and Eckert numbers, respectively;

is the time;

is the heat capacity at constant pressure;

is the scale of transverse coordinate in the boundary layer;

are the characteristic functions;

is the displacement thickness;

is the thickness of momentum loss;

is the surface friction stress;

is the reduced coefficient of frictign;
are the reduced heat-flux coefficients;
is the normalizing factor;

are the dimensionless parameters;

is the radius of the cylinder;

is the velocity of incoming flow,
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